Holomorphic Bundles and Many-body Systems
نویسنده
چکیده
We show that spin generalization of elliptic Calogero-Moser system, elliptic extension of Gaudin model and their cousins can be treated as a degenerations of Hitchin systems. Applications to the constructions of integrals of motion, angle-action variables and quantum systems are discussed. The constructions are motivated by the Conformal Field Theory, and their quantum counterpart can be treated as a degeneration of the critical level Knizhnik-Zamolodchikov-Bernard equations.
منابع مشابه
Para-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملHitchin Systems - symplectic maps and two - dimensional version
The aim of this paper is two fold. First, we define symplectic maps between Hitchin systems related to holomorphic bundles of different degrees. It allows to construct the Bäcklund transformations in the Hitchin systems defined over Riemann curves with marked points. We apply the general scheme to the elliptic Calogero-Moser (CM) system and construct the symplectic map to an integrable SL(N, C)...
متن کاملCorrespondences, Von Neumann Algebras and Holomorphic L 2 Torsion
Given a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion of holomorphic L 2 torsion, which lies in the determinant line of the twisted L 2 Dolbeault cohomology and represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over finite von Neumann algebras as developed in [CFM]. This specialises to the Ray-Singer-Q...
متن کاملHolomorphic Fiber Bundles over Riemann Surfaces
For the purpose of this paper a fiber bundle F—>X over a Riemann surface X is meant to be a fiber bundle in the sense of N. Steenrod [62] where the base space is X, the fiber a complex space, the structure group G a complex Lie group that acts as a complex transformation group on the fiber, and the transition functions g%j{x) are holomorphic mappings into G. Correspondingly, cross-sections are ...
متن کاملOn the topology of holomorphic bundles
In this work we study the topology of holomorphic rank two bundles over complex surfaces. We consider bundles that are constructed by glueing “local” holomorphic bundles and we show that under certain conditions the topology of the bundle does not depend on the glueing. As a consequence we present a simple and new classification of bundles on blown-up surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995